Biomolecular committor probability calculation enabled by processing in network storage
نویسندگان
چکیده
Computationally complex and data intensive atomic scale biomolecular simulation is enabled via processing in network storage (PINS): a novel distributed system framework to overcome bandwidth, compute, storage, organizational, and security challenges inherent to the wide-area computation and storage grid. PINS is presented as an effective and scalable scientific simulation framework to meet the unbounded requirements of a ‘user of infinite need’. The novel hybrid database–filesystem architecture enables the high throughput computation and data generation required by our scientific target. Biomolecular simulation methods are correlated with the primary PINS components, including: client tools, hybrid database/file management service (GEMS), computation engine (Condor), virtual file system adapter (Parrot), and local file servers (Chirp). Performance for the PINS prototype is reported for the committor probability calculation of a solvated protein domain requiring 500 independent simulations and the generation of over 1,000,000 output files. 2008 Elsevier B.V. All rights reserved.
منابع مشابه
Accelerating Molecular Dynamics Simulation Using Graphics Processing Unit
We have developed CUDA-enabled version of a general purpose molecular dynamics simulation code for GPU. Implementation details including parallelization scheme and performance optimization are described. Here we have focused on the non-bonded force calculation because it is most time consuming part in molecular dynamics simulation. Timing results using CUDA-enabled and CPU versions were obtaine...
متن کاملCalculating rate constants and committor probabilities for transition networks by graph transformation.
A graph transformation procedure is described that enables waiting times, rate constants, and committor probabilities to be calculated within a single scheme for finite-state discrete-time Markov processes. The scheme is applicable to any transition network where the states, equilibrium occupation probabilities, and transition probabilities are specified. For networks involving many states or s...
متن کاملSolving for high dimensional committor functions using artificial neural networks
In this note we propose a method based on artificial neural network to study the transition between states governed by stochastic processes. In particular, we aim for numerical schemes for the committor function, the central object of transition path theory, which satisfies a high-dimensional Fokker-Planck equation. By working with the variational formulation of such partial differential equati...
متن کاملProviding a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)
The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...
متن کاملProviding a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)
The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 34 شماره
صفحات -
تاریخ انتشار 2008